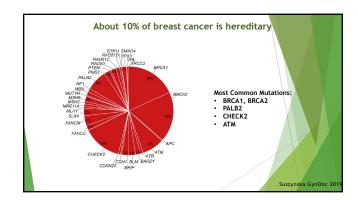
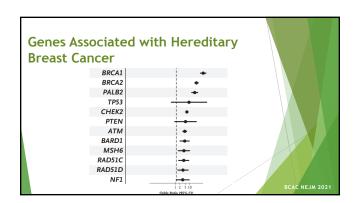
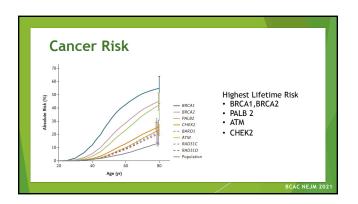
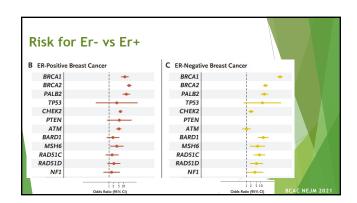
What's New in Breast Cancer Genetics

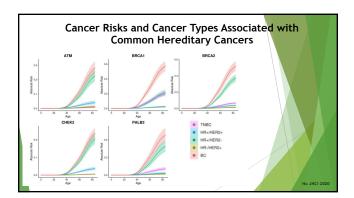
Marie E. Wood, MD Professor of Medicine University of Colorado

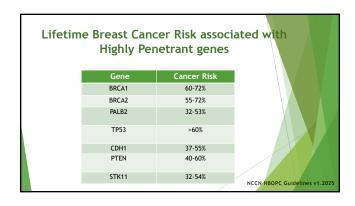

Mountain States Cancer Conference September 27, 2024

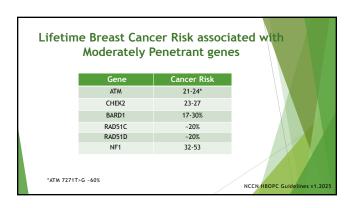

Disclosures


- Natera advisory board 2022
- ▶ No other relevant disclosures


Learning Objectives


- $\blacktriangleright \ \ \text{Recognize genes associated with high vs moderate risk for breast cancer}$
- ▶ Outline management differences between high and moderately penetrant genes
- ▶ Identify indications for parp inhibitors in the adjuvant and metastatic settings





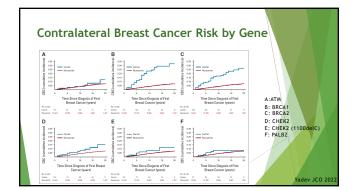
Genes as		n HBC with ma
	Highly Penetrant	Moderately Penetrant
	BRCA1	CHEK2
	BRCA2	ATM
	PALB2	NF1
	TP53	RAD51C
	PTEN	RAD51D
	STK11	BARD1

	Screening breast MRI (>20% lifetime risk)	Discuss risk reducing mastectomy	Discuss risk-reducing BSO
Intervention warranted based on risk - Highly Penetrant Genes	BRCA1 BRCA2 PALB2 TP53 CDH1 PTEN STK11	BRCA1 BRCA2 PALB2 TP53 CDH1 PTEN STK11	BRCA1 BRCA2 PALB2 BRIP1 RAD51C RAD51D PALB2
Intervention warranted based on risk - Moderately Penetrant Genes	ATM CHEK2 NF1 BARD1 RAD51C/D		
Insufficient evidence	BRIP1	ATM, CHEK2, BARD1,NF1 RAD51C/D	TP53

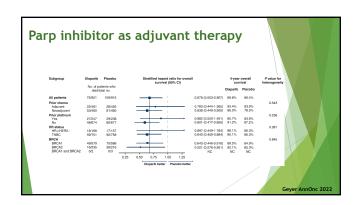
Indications for Genetic Testing Affected with cancer Cancer type and pathology Family History Ethnicity Unaffected Family history Ethnicity

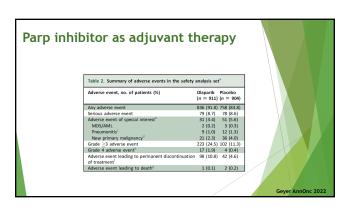
Indications for Genetic Testing based on Personal History ▶ Age ≤65 y ▶ Any age: ▶ To aid in treatment decisions (surgical, adjuvant, metastatic management) ▶ Pathology/histology ▶ Triple-negative breast cancer ▶ Multiple primary breast cancers (synchronous or metachronous) ▶ Lobular breast cancer with personal or family history of diffuse gastric

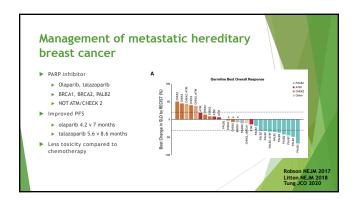
Bedrosian JCO 2024 Lu, Wood JCO 2014


► Ancestry: Ashkenazi Jewish ancestry

► Family history




Implications of Genetic Testing for Women with Breast Cancer


- ► At Diagnosis
 - ► Surgical decision making
 - ▶Bilateral mastectomies are an option for highly penetrant genes (i.e.BRCA1, BRCA2, PALB2)
 - ► Avoid radiation for TP53 mutation carriers
 - ► Surveillance
 - ►Annual Screening Breast MRI + Annual Mammogram for moderate and highly penetrant genes

Adjuvant therapy for BRCA associated cancers Eligibility: | Er->2cm/LN+ or no pCR (CPS+EG score 3) | 0.00

Cascade testing

- ▶ Definition: Genetic testing in blood ▶ Positive relative who have known pathogenic variants.
 - ▶ 1st degree relatives: 50% risk ▶ 2nd degree relatives: 25% risk
- ► Impact of testing
- Have cancer risk associated with mutation
- Cancer screening and prevention can improve survival
- ▶ Negative
 - Population cancer risk
 - Need to evaluate non-mutation side of the family

Summary

- ▶ Reviewed Genes and Breast Cancer Risk associated high and moderately penetrant genes
- ▶ Reviewed management for both high and moderately penetrant gene mutation carriers
- Discussed
 - ▶ Risk for Er+ vs ER disease by gene
 - ightharpoonup Risk for Contralateral disease by gene
- ▶ Impact on management of breast cancer
- ▶ Importance of cascade testing!!!

Who should receive adjuvant parp inhibitor

- ▶ 35 year old BRCA 1 mutation carrier with LN+ ER+ disease who has significant residual disease after neoadjuvant Adriamycin+Cytoxan followed by taxol
- ▶ 65 year old BRCA 2 mutation carrier with 7LN+ ER+ disease and undergoes bilateral mastectomy
- ▶ 40 year old BRCA 1 mutation carrier with LN+ ER-/HER2+ disease who has residual disease after neoadjuvant therapy

Which mutation carriers are not candidates for risk reducing mastectomies ▶ PALB2 mutation carriers ▶ ATM mutation carriers ▶ TP 53 mutation carriers	
• Thank you!	