Management of Acute Ischemic Stroke

Ethan Cumbler M.D.
Assistant Professor Internal Medicine
University of Colorado Hospital
UCH Stroke Council
2010

Disclosures/Relationships

Dr. Cumbler serves on the AHA/ASA Pacific/Mountain Stroke Quality Speakers Bureau.

No commercial conflict of interests in the last 3 years

OBJECTIVES

1. Use validated risk stratification tools to determine which TIA patients need admission
2. Identify appropriate means to manage co-morbid illness after stroke
3. Describe mechanisms to reduce the risk of complications following stroke
4. Institute evidence based secondary prevention therapies.

Ischemic Stroke

- 700,000 ischemic strokes yearly
 - Approximately one stroke every 45 seconds
- 200,000 are recurrent events
- Leading cause of disability in the US
- Quality stroke care attractive to hospitals
 - Ischemic stroke treated with tPA pays extra $6000

Heart Disease and Stroke Statistics-2007 Update.

How Diagnosis-Related Group 559 Will Change the US Medicare Cost Reimbursement Ratio for Stroke Centers.
Stroke 2007;38:1309-1312

Presented by Dr. Don Smith at Rocky Mountain Stroke Summit Dec 2008
Non-contrast Head CT negative
The patient's symptoms begin improving in the Emergency Department

* tPA not given due to mild and resolving symptoms
* Complete resolution 90 minutes after onset

*Should she be admitted?

TIAs
- Within 3 months 10% will have had a stroke
- Half will occur in the first 48 hours
- 2/3 of second strokes cause disability
- 21% are fatal

Rationale for Hospitalization
1. Allows rapid initiation of tPA for 2nd CVA
2. Facilitates evaluation and 2nd prevention
 - MRI
 - Carotid U/S
 - Echo
 - Telemetry
 - Lipids
 - Antiplatelet OR Anticoagulant
 - Statin
 - Carotid Endarterectomy
 - Better outcomes in 1st 2 wks

- National Stroke Association Guidelines
 - Evaluation should occur in 24-48 hours

Theoretically This Could Occur

Outpatient……

Three fourths of TIAs in the ED are sent home
- Subsequent delays in evaluation
- 1/3 not discharged on antithrombotic

Only 2% of TIAs seen in clinic are admitted
- Less than half with afib started on warfarin
- 1/3 did not have workup for > 30 days

Hospitalization associated with decreased risk of second stroke (HR 0.73)
- But increases resource utilization

Predicting Early Second Stroke

ABCD² Score

<table>
<thead>
<tr>
<th>Clinical Feature</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>> 60 years</td>
</tr>
<tr>
<td>Blood Pressure</td>
<td>SBP > 140 or DBP > 90</td>
</tr>
<tr>
<td>Clinical Deficit</td>
<td>Unilateral Weakness OR</td>
</tr>
<tr>
<td>Duration</td>
<td>Speech Impairment</td>
</tr>
<tr>
<td></td>
<td>> 60 min OR</td>
</tr>
<tr>
<td></td>
<td>10-59 min</td>
</tr>
<tr>
<td>Diabetes</td>
<td>Present</td>
</tr>
</tbody>
</table>

Predicting Early Second Stroke

ABCD² Score

<table>
<thead>
<tr>
<th>ABCD² Score</th>
<th>0-3</th>
<th>4-5</th>
<th>6-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Stratification</td>
<td>Low</td>
<td>Intermediate</td>
<td>High</td>
</tr>
<tr>
<td>2 day stroke risk</td>
<td>1%</td>
<td>4.1%</td>
<td>8.1%</td>
</tr>
</tbody>
</table>

Low Risk - Outpatient Evaluation
Intermediate Risk - Inpatient, Hospital Observation, or Outpatient Evaluation
High Risk - Hospitalize
Case Continued

Day after hospitalization she wakes from nap with right hemiplegia and aphasia. Last documented normal at noon.

Nurse calls the physician listed on admission orders.
- No answer after three attempts.
- Nursing eventually determines the correct physician to call.

Physician evaluates and orders non-contrast head CT.

Head CT read as negative for bleed. Based on continued symptoms:
- Neurology called for consultation.

Neurologist explains that she is covering multiple hospitals and cannot physically see the patient.
- Recommends MRI with diffusion.

MRI/MRA ordered.

Radiology indicates MRI no longer available as technician has gone home.

Changed to CT perfusion / CTA.

Read as L MCA clot with downstream infarct.

Did this represent exceptional care, standard care, or sub-standard care?
Treatment

Time Thresholds

– Previously 3 hours for IV thrombolysis
 → ASA now recommends 4.5 hours based on ECASS III

– 6 hours for IA thrombolysis

– 8 hours for mechanical thrombolysis

4. Lansberg MG et al. Efficacy and Safety of tPA 3 to 4.5 hours after Acute Ischemic Stroke. Stroke 2009;2438-2441

Time to Evaluation for In-Hospital Strokes

1. 1993 study
 → Median time from recognition to neurology evaluation of 2.5 hours

Albers. Evaluation Times for Patients with In-hospital Strokes. Stroke 1993;24:1817-1822

Admittedly this was 1993—prior to the t-PA era

How Are We Doing Now?
Quality of Care
Evaluation Time for In-Hospital Stroke
Goal is 25 minutes to CT scan

In the Modern Era:
- In only 25% was neurology eval considered an emergency
- Only 15% evaluated by MD within 3 hrs of symptoms
- Only 3% of pts received imaging within benchmark 25 min

Inpatient “Stroke Alert” Program
“Code Gray”
“Code Stroke”
“Code Neuro”
“Code Brain Attack”

- Education of all staff on stroke symptoms
- Any staff member can trigger a stroke alert
- Single alert number
- Rapid mobilization of staff
 - Acute Stroke Team or stroke trained Rapid Response Team
 - Authority to proceed with evaluation

Improving Hospital Processes
In-hospital Stroke Evaluation Team

Evaluation Time for In-hospital Ischemic Strokes

1. Nolan S. Crit Care Nurs Q 2003
2. Farooq MU. Cerebrovasc Dis 2008
3. In-hospital Stroke Evaluation Team
4. Candisio EC. J Stroke and Cerebrovascular Dis in press
Our Patient Has now Suffered an Ischemic Stroke Following Her TIA

How can we reduce the chance of complications which would risk survival and promote disability?

Management of Co-morbidities

Glycemic Control

- Hyperglycemia present in 1/3 of strokes
- Correlates with worsened outcomes
- Recommendation is to control to <200 with goal of 80-140
- How to achieve this goal and whether intensive insulin drip therapy will end up proving beneficial is not clear

PEARLS

- Rarely a need for dextrose in IVF in the first 24 hours
- Metformin problematic-contrast/lactic acidosis
- Sulfonylurea medications associated with hypoglycemia when oral intake interrupted

Management of Co-morbidities

Hypertension

Ischemic Penumbra

- Zone of at risk tissue susceptible to reduction below the threshold of viability in response to relatively small drops in MAP.
Objective of Blood Pressure Control

- Maximize perfusion to the ischemic penumbra
- Minimize the hypertensive risk of hemorrhagic transformation.

Management of Co-morbidities

Acute Blood Pressure Control

- 80% of stroke admissions have elevated BP.
- Even without intervention, the pressure tends to fall 10-15% in the first 24 hours.
- By day 10 BP will fall 13-20%

Ischemic Stroke Pre-tPA

BP must be <185/110 for tPA

Recommended Steps:

- Labetalol 10-20mg IV (may repeat x1) or
- Nitropaste 1-2 inches
Post-tPA

Goal BP<180/105

- Monitor BP closely.
- BP q15min x 2 hrs then
- q30min x 6 hrs then
- qhr x 16 hrs

Choice of agent?
- Nitroprusside
- Labetolol
- Nicardipine
- Fenoldopam
- Nitroglycerin

Avoid sublingual nifedipine and clonidine

About 1/3 of patients who receive tPA require antihypertensive therapy in the first day.

Ischemic Stoke Without tPA

Withhold treatment until BP >220/120

“Permissive Hypertension”

- Titratble
- Avoid overcorrection
- If BP lowered it is generally safe as long as not exceeding 10-15%

Lower targets being investigated
Timing of initiation of antihypertensive therapy controversial

Chronic Blood Pressure Control

- UK TIA study demonstrated a 28% decrease in long term stroke risk for every 10mm drop in systolic BP.

- By comparison- How much risk reduction do you get with aspirin?
 - 15%
Complications

- 64% of stroke patients in a modern stroke unit have a complication in the first week
 - Fever 24%
 - UTI 16%
 - Pneumonia 11%
 - Myocardial injury 16%
 - PE 0.6%

Urinary Tract Infection

- 80% of nosocomial UTIs are associated with catheters
- Infection is directly related to duration of use
- Remove ASAP/use alternatives if possible
- Physicians unaware of catheter
 - 28% of cases

Aspiration Pneumonia

- to > of stroke patients have dysphagia
- One third of patients with aspiration will develop pneumonia
- 50% reduction in risk with formal program:
 - Swallow screen prior to diet/meds
 - Aspiration precautions
 - Oral care
 - Pneumonia/Influenza vaccine
Deep Venous Thrombosis

- Without prophylaxis, up to 75% of patients with hemiplegic stroke will have evidence of DVT
- Effective prophylaxis can reduce the VTE rate by 50-70%
- With prophylaxis- 1% symptomatic VTE rate

Effective prophylaxis can reduce the VTE rate by 50-70%

Stockings and SCDs- non-significant reduction

- Anti-platelet therapy alone is NOT sufficient
- Lower potency heparin prophylaxis (heparin 5000 U bid) less effective than higher potency
- Higher efficacy prophylaxis does not appear to confer increased risk for ICH – Studies have mixed results on this issue

Work-up reveals:
- LDL 120
- Sinus rhythm
- Heart structures normal
- <50% stenosis of both carotids

How do we optimize her chances of avoiding another stroke?
Lipid Management

- SPARCL trial 16% RRR with statin over 5 yrs following CVA
- No change in mortality
- Small increase in hemorrhagic strokes*.
- High-dose, high-potency cholesterol lowering therapy recommended for LDL>100
 - Optional goal of <70

Secondary Prevention
Anti-thrombotics-101

- JCAHO requires anti-thrombotics to be started within 48 hours
- Warfarin for atrial fibrillation
- Antiplatelet therapy if non-cardioembolic
 - Clopidogrel
 - ASA/Dipyridamole ER
 - ASA

Secondary Prevention
Anti-thrombotics-201

- Acute use of heparin has never been proven to improve outcomes.
 - Early second ischemic stroke equally balanced by early hemorrhagic strokes
- Higher doses of aspirin do not provide greater benefit than low doses- UK TIA trial
- For arterial strokes- warfarin is not superior to aspirin- WARSS Trial
- Combination of clopidogrel and aspirin does not provide benefit over monotherapy- MATCH Trial