The New C. Difficile: Diagnosis, Prevention & Treatment

Paul D. Holtom, MD
Associate Professor of Medicine and Orthopaedics
USC Keck School of Medicine

Clostridium difficile

- Organism first described in 1935
 - in stool of healthy newborn infants
- Anaerobic spore-forming bacillus
- Fecal-oral transmission
 - contaminated environment
 - hands of healthcare personnel

Clostridium difficile Associated Diarrhea

- Clostridium difficile-associated disease (CDAD)
 - First described in 1978 by Bartlett
 - Most common cause of health care-associated infectious diarrhea in adults
 - Most common cause of antibiotic-associated diarrhea (15-25%)

Clostridium difficile Associated Disease

- Spectrum of infection
 - Asymptomatic carrier
 - Mild disease
 - Severe disease
 - Fulminant infection
 - Toxic megacolon and perforation
 - Diarrhea may be absent with dysmotility

Pathogenesis of CDAD

Antibiotic therapy

Alteration of colonic microflora

C. difficile exposure and colonization

Release of toxin A and toxin B

Colonic mucosal injury and inflammation

Clostridium difficile Associated Diarrhea

- Antimicrobial exposure is major risk factor for disease
 - Acquisition and growth of *C. difficile*
 - Suppression of normal flora of the colon
 - Clindamycin, penicillins, cephalosporins, fluoroquinolones
 - Judicious antibiotic use decreases incidence of CDAD

Epidemiology of CDAD

- Health care–associated infection prevalence (non-epidemic)
 - 0.1 to 30 per 1,000 patients
 - Marked increase in last 10 yrs
- Community incidence
 - 8 to 12 per 100,000 person-years

Antimicrobial Use as a Risk Factor for CDI

- Most important modifiable risk factor
 - Suppresses normal flora providing a “niche” for *C. difficile* to flourish
- Virtually every antimicrobial has been associated with CDI
- Longer and multiple antimicrobial exposures increases risk

Impact of CDAD on Cost and Length of Stay

- Independent predictors of ↑ hospital costs
 - Disease severity
 - Course complicated by *C. difficile* diarrhea
- Cost of $10,488 for patient with CDAD
 - 54% (95% CI, 17%–103%) higher than typical patient
- CDAD is an independent predictor of increased length of stay
 - 3.6 days (95% CI, 1.5–6.2)
 - 55% (95% CI, 23%–94%) longer than typical patient

Infect Control Hosp Epidemiol 2010
Adjusted hazard ratios for CDI by antibiotic received

<table>
<thead>
<tr>
<th>Antibiotic Class</th>
<th>AHR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoroquinolones</td>
<td>3.44*</td>
</tr>
<tr>
<td>1st generation cephalosporins</td>
<td>1.78*</td>
</tr>
<tr>
<td>2nd generation cephalosporins</td>
<td>1.89*</td>
</tr>
<tr>
<td>3rd generation cephalosporins</td>
<td>1.56*</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>1.77*</td>
</tr>
<tr>
<td>β-lactam/β-lactamase inhibitors</td>
<td>1.88*</td>
</tr>
<tr>
<td>Macrolides</td>
<td>1.65*</td>
</tr>
<tr>
<td>Narrow spectrum penicillins</td>
<td>1.37</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>1.34</td>
</tr>
</tbody>
</table>

* p<0.05

Pepin et al., CID, 2005

Outbreak Associated With Increased Death and Colectomies

- Outbreak of nosocomial C. difficile infection
 - 253 infections during first 2 years
- Increase from 2.7 to 6.8 cases per 1,000 discharges (P<0.001)
 - 26 colectomies
 - 18 deaths
- Fluoroquinolone use increased prior to outbreak

Outbreak Associated With Increased Death and Colectomies

- Antibiotics independently associated from multivariate analysis
 - Clindamycin (OR, 4.6; 95% CI, 1.9-12.8)
 - Ceftriaxone (OR, 5.4; 95% CI, 1.8-15.8)
 - Levofloxacin (OR, 2.6; 95% CI, 1.2-3.3)
- Other drugs independently associated
 - Immunosuppressives (OR, 3.2; 95% CI, 1.7-6.1)
 - Proton pump inhibitors (OR, 1.8; 95% CI, 1.2-2.9)
 - H2 blockers (OR, 1.6; 95% CI, 1.0-2.5)

Other Risk Factors for CDI

• Advanced age
• Increased hospitalization duration
• Chemotherapy
• Immunosuppression
 – Evidence suggests that *C. difficile* has become the most important pathogen causing bacterial diarrhea in US pts with HIV

Infect Control Hosp Epidemiol 2010

Other Risk Factors for CDI

• Gastrointestinal surgery
• Manipulation of GI tract
 – including tube feeding
• Probable, although controversial
  use of acid-suppressing medications

Infect Control Hosp Epidemiol 2010

DIAGNOSIS OF C. DIFF DISEASE
SPECIMEN

• Send only unformed stool

DIAGNOSTIC CHALLENGES

• Tissue cytotoxic assay
 – “Gold standard”
 – Not used by clinical labs because of need for technical expertise and 48 hour turn-around time
Types of commercial toxin detection assay

- Enzyme immunoassay (EIA)
 - 96-well format
 - manual
 - Semi-automated
- Enzyme-linked Fluorescence Assay
 - Automated
- Lateral flow assay
 - Rapid

Enzyme Immunoassay for Toxins A and B

Positive control

- - +

Negative control

Sensitivity: manufacturer states 95% compared to cytotoxic assay
Glutamate dehydrogenase test (GDH)

DIAGNOSTIC CHALLENGES

- EIA
 - Results in 2 hours
 - Sensitivity 60-95%; Specificity 75-100%
 - Repeat testing not warranted
 - Changes diagnosis in <1% of cases
 - Increases rate of false positive test

DIAGNOSTIC CHALLENGES

- EIA
- Tissue cytotoxic assay
- Culture
 - Very sensitive
 - Difficulty in differentiating toxin-producing from non-toxin producing strains
Summary: Diagnostic Tools

<table>
<thead>
<tr>
<th>Test</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxin testing (EIA)</td>
<td>Rapid/cheap/easy to use</td>
<td>Sensitivity: 63-94% Specificity: 75-100%</td>
</tr>
<tr>
<td>Toxigenic culture</td>
<td>High sensitivity High specificity</td>
<td>Labor intensive/Slow TAT</td>
</tr>
<tr>
<td>GDH</td>
<td>Sens: 83-95%; Specificity: 89-99%</td>
<td>Rapid; Inexpensive</td>
</tr>
<tr>
<td>Cell cytotoxicity assay</td>
<td>Sensitivity: 67%</td>
<td>Labor intensive/Slow TAT</td>
</tr>
<tr>
<td>PCR</td>
<td>Rapid; stand alone test Sens: 94.4%; Specific: 96.3%</td>
<td>Expensive</td>
</tr>
</tbody>
</table>

THERAPY

STANDARD THERAPY

- Withdrawal of inducing agent
- Avoid drugs with antiperistaltic activity
- Oral metronidazole
 - 250 mg qid or 500 mg tid x 10 d
 - First line therapy since 1980’s
 - CDC preferred therapy
 - New reports of failure rates of 16-38%

Bartlett, Ann Int Med 2006;145:758-764
STANDARD THERAPY

- Withdrawal of inducing agent
- Avoid drugs with antiperistaltic activity
- Oral metronidazole
- Oral vancomycin
 - 125 mg-250 mg po qid x 10 d
 - Probably more effective, esp. in seriously ill patients

Bartlett, Ann Int Med 2006;145:758-764

Treatment guidelines

<table>
<thead>
<tr>
<th>Clinical Definition</th>
<th>Recommended Treatment</th>
<th>Strength of Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Episode: Mild or Moderate</td>
<td>metronidazole 500 mg po tid x 10-14 days</td>
<td>A-I</td>
</tr>
<tr>
<td>Initial Episode: Severe</td>
<td>vancomycin 125 mg po qid x 10-14 days</td>
<td>B-I</td>
</tr>
<tr>
<td>Initial Episode: Severe, Complicated</td>
<td>vancomycin 500 mg po/NGT qid + metronidazole 500 mg iv qd (if complete ileus, consider rectal vancomycin)</td>
<td>C-III</td>
</tr>
<tr>
<td>First Recurrence</td>
<td>same as for initial episode</td>
<td>A-II</td>
</tr>
<tr>
<td>Second Recurrence</td>
<td>vancomycin in a tapered/pulsed regimen</td>
<td>B-III</td>
</tr>
</tbody>
</table>

Adapted from practice guidelines: Infection Control and Hospital Epidemiology, May 2010

RECURRENT CDI

- Either relapse of infection of the original strain or re-infection after exposure to new strain
- Historically 6-25% have at least one recurrence
- Recent reports show an increase in frequency of recurrences after metronidazole therapy, especially in patients aged 65 years or more
Multiple recurrence treatment

- **Vancomycin**
 - 125 mg qid x 10-14 days
 - 125 mg bid x 7 days
 - 125 mg daily x 7 days
 - 125 mg q2-3 days x 2-8 wks

- Metronidazole shouldn’t be used beyond the first recurrence or long-term given the cumulative risk of neurotoxicity

OTHER DRUGS

- **Fidaxomicin**

FIDAXOMICIN

- Macrocyclic antibiotic
- More active *in vitro* than vancomycin by factor of 8
- Minimal systemic absorption
- High fecal concentrations
- Limited activity *in vitro/in vivo* against components of normal gut flora
Fidaxomicin vs. Vancomycin

• Phase 3 clinical trial comparing efficacy and safety of fidaxomicin vs. vancomycin
• 629 adults with acute *C. difficile* infection and + toxin were randomly assigned to fidaxomicin 200 mg bid or vanco 125 mg po qid

N Engl J Med, 2011

Fidaxomicin vs. Vancomycin

• Primary end point
 – clinical cure (resolution of symptoms and no need for further treatment as of the 2nd day after therapy ended)
• Secondary end points
 – recurrence of *C. difficile* infection (diarrhea and + toxin within 4 wks)
 – global cure (cure with no recurrence)

N Engl J Med, 2011

Figure 2. Rates of Primary and Secondary End Points.

For the primary outcome of clinical cure, the lower boundary of the 97.5% confidence interval for the difference in cure rates between fidaxomicin and vancomycin was ≥3 percentage points in the modified intention-to-treat (mITT) analysis and ≥2 percentage points in the per-protocol (PP) analysis.

N Engl J Med, 2011
OTHER DRUGS

• Fidaxomicin
• Rifaximin

Rifaximin

• Comparable cure rates with vancomycin in small study (n=20)

• Used as adjunct in pts with multiple recurrences
 • Rifaximin x 4 wks (400mg tid x 2 wks + 200mg tid x 2 wks)
 • In 5 of 6 resulted in no additional episodes
 • “Rifaximin chaser”: 2 wk course (usually 400mg bid) following last course of vancomycin treatment
 • In group of pts with mean of 6 recurrences, there were no additional recurrences in 11 (75%) of 14
 • Resistance is an issue with 2 of 3 failures showing high-level resistance (MIC >256 µg/mL)
OTHER DRUGS

• Nitazoxanide
• Bacitracin
• Teicoplanin
• Fusidic acid

No advantage over vancomycin and metronidazole or are currently unavailable

What else is available?

Non-Antimicrobial Treatments

• Intraluminal toxin neutralizing agents
 – Bovine whey protein
 – Tolevamer
Intraluminal toxin neutralization

- Tolevamer
 - High molecular weight anionic polymer
 - Toxin neutralization (including against BI/NAP1/027) demonstrated in vitro
 - Affinity for toxin A higher than for toxin B
 - In 2 phase 3 trials markedly inferior to both metronidazole and vancomycin in treatment response

CID, 2010

Intraluminal toxin neutralization

- Whey protein in immunized cow’s milk (contains high levels of secretory IgA)
 - Primary treatment trial
 - Randomized, double blinded comparing immune whey 200 mL tid to metronidazole 400mg tid x 14D
 - Treatment response in 100% treated with metronidazole and 89% treated with whey
 - Recurrence prevention trial
 - Open label and uncontrolled
 - Recurrence rate of 10% (11 of 109)

CID, 2010

Non-Antimicrobial Treatments

- Intraluminal toxin neutralizing agents
- Biotherapeutic agents
 - Probiotics
 - Fecal transplants
 - Nontoxigenic C. difficile
PROBIOTICS

- Organisms
 - Lactobacillus
 - Saccharomyces boulardii
 - Yogurt (Streptococcus thermophilus)
- Insufficient evidence to recommend
- Concern over safety
 - Bacteremia/fungemia in immunocompromised patients

Fecal Donor Instillation Therapy

- Retrospective study of 40 pts with recurrent CDAD treated at a medium-sized Norwegian hospital from 1994 through 2008
- Close relatives or other household members selected as stool donors
 - Individuals without symptoms of GI disease or a hx of chronic infectious disease were considered suitable
 - Donors were screened for Hep A/B/C and hiv as well as enteric bacterial pathogens (Salmonella, Shigella, Campylobacter, Yersinia)

Scandinavian Journal of Infectious Diseases, 2010

Fecal Donor Instillation Therapy

- FDIT Protocol
 - All antimicrobial therapy stopped evening prior to stool transplantation and pts were NPO from midnight
 - Fresh stool sample of 50-100g obtained on day of instillation procedure
 - Stool sample was spread out onto a gauze pad which was then placed in a strainer
 - The gauze was flushed with 250 ml sterile 0.9% NaCl
 - The resulting suspension was collected and aspirated into syringes
 - ~200 cc was introduced through the instrument canal of the gastroscope with a small amount of sterile 0.9% NaCl

Scandinavian Journal of Infectious Diseases, 2010
Fecal Donor Instillation Therapy

- 83% success rate reported (33 patients)
 - In 73% first treatment successful (no recurrence within 80 days)
 - Of the 11 patients failing to respond to the first instillation treatment, 6 patients received a second instillation, 4 of which were successful
 - Of the 7 non-responders, 5 were seriously ill due to long lasting diarrheal disease and comorbidity and died within 80 days and 2 were believed to have IBD who responded to steroids
- No adverse effects of FDIT observed

Scandinavian Journal of Infectious Diseases, 2010

NON-TOXIGENIC C. DIFFICILE

- When given to hamsters during or after antibiotic treatment able to harmlessly colonize the gut and prevent subsequent infection challenge with toxigenic strains of C. difficile

CID, 2010

NON-TOXIGENIC C. DIFFICILE

- In patients with natural asymptomatic colonization with C. difficile there is an associated decreased risk in CDI
- Human safety trials of nontoxigenic C. difficile were completed in early 2010

CID, 2010
Non-Antimicrobial Treatments

- Intraluminal toxin neutralizing agents
- Biotherapeutic agents
- Systemic antibody approaches
 - IVIG
 - Monoclonal antibodies
 - Active vaccines

CID, 2010

IVIG

- IVIG preparations contain neutralizing levels of IgG antibody to toxin A and toxin B
- In 1991 IVIG was reported to be effective for immunoglobulin-deficient children with chronic recurrent CDI

CID, 2010

IVIG

- Only retrospective studies are available and there's no conclusive evidence of benefit, nor has an effective dose been established
 - One study compared 18 pts who received IVIG (200-300 mg/kg) compared with a group of patients with similar CDI severity found no difference in mortality, colectomy rate, or length of stay

CID, 2010
Monoclonal Antibodies

- Randomized, double-blind, placebo-controlled study of 200 patients
- Two neutralizing, fully human monoclonal antibodies administered together as a single infusion (each 10 mg/kg) to patients with symptomatic *C. difficile* infection who were receiving either metronidazole or vancomycin
- Primary outcome was laboratory-documented recurrence of infection during the 84 days after

From N Engl J Med, 2010

Antibody vs. placebo

![Graph showing antibody vs. placebo](image)

From N Engl J Med, 2010

VACCINES

- Focused on developing immunity to the *C. difficile* toxins
 - based on studies showing serum IgG antibody to toxins A and B correlated with protection
- In humans, preliminary trials of a parenteral vaccine containing toxoids A and B have shown that the product is safe and induces a vigorous antibody response

From CID, 2010
VACCINES

- Questions arise regarding response to vaccine in elderly population, magnitude and duration of protection and selection of an appropriate at-risk population

PREVENTION

Infection Control and Prevention

- Gloves and gowns on entry to room of patient with CDI
- Compliance with hand hygiene
- Soap and water
Infection Control and Prevention

• Identification and removal of environmental sources (i.e. replacement of electronic rectal thermometers with disposables)
• Use chlorine-containing agents or other sporicidal agents to address environmental contamination
• Spore form of *C. difficile* is highly resistant to killing by alcohol

Infect Control Hosp Epidemiol 2010

Infection Control and Prevention

• Accommodate pts with CDI in private rooms
• If single rooms not available, cohort patients
• Minimize frequency and duration of antimicrobial therapy

Infect Control Hosp Epidemiol 2010

Infection Control and Prevention

• There is NO need for:
 – Routine identification of asymptomatic carriers for infection control purposes
 • Treatment of such identified patients is not effective
 – Routine environmental screening for *C. difficile*
 – Administration of probiotics to prevent primary CDI
 • Limited data to support this approach and potential risk of bloodstream infection

Infect Control Hosp Epidemiol 2010
SUMMARY

• CDI rates are increasing nationally
• More severe strains are being seen, leading to increased morbidity and mortality
• Current therapies are not optimal
• Prevention is paramount:
 – Hand hygiene, environment, ASP

Prediction is very difficult, especially about the future.

Niels Bohr

THANK YOU